Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398560

RESUMEN

The proposed broadband attached proton test sequence allows the user to easily record 13C nuclear magnetic resonance multiplicity-edited and quaternary-carbon-only spectra. Compared to earlier attached proton test experiments, it preserves both a tolerance for wide ranges of one-bond-coupling constant values and the effective suppression of residual CHn signals in the quaternary-carbon-only spectra. The recording of edited spectra or quaternary-carbon-only spectra is made easy by a single, user-controllable constant. These attributes make the broadband attached proton test experiment attractive for the 13C analysis of small molecules, including spectral editing, particularly in high-throughput analysis laboratories.

2.
Microbiol Spectr ; 12(1): e0357923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38059623

RESUMEN

IMPORTANCE: Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Niño , Humanos , Streptococcus pneumoniae/genética , Infecciones Neumocócicas/microbiología , Serogrupo , Vacunas Neumococicas , Asia
3.
Front Cell Infect Microbiol ; 13: 1279119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094742

RESUMEN

Background: The polysaccharide capsule of Streptococcus pneumoniae plays a major role in virulence, adherence to epithelial cells, and overall survival of the bacterium in the human host. Galactose, mannose, and N-acetylglucosamine (GlcNAc) are likely to be relevant for metabolization in the nasopharynx, while glucose is the primary carbon source in the blood. In this study, we aim to further the understanding of the influence of carbon sources on pneumococcal growth, capsule biosynthesis, and subsequent adherence potential. Methods: We tested the growth behavior of clinical wild-type and capsule knockout S. pneumoniae strains, using galactose, GlcNAc, mannose, and glucose as carbon source for growth. We measured capsule thickness and quantified capsule precursors by fluorescein isothiocyanate (FITC)-dextran exclusion assays and 31P-nuclear magnetic resonance measurements, respectively. We also performed epithelial adherence assays using Detroit 562 cells and performed a transcriptome analysis (RNA sequencing). Results: We observed a reduced growth in galactose, mannose, and GlcNAc compared to growth in glucose and found capsular size reductions in mannose and GlcNAc compared to galactose and glucose. Additionally, capsular precursor measurements of uridine diphosphate-(UDP)-glucose and UDP-galactose showed less accumulation of precursors in GlcNAc or mannose than in glucose and galactose, indicating a possible link with the received capsular thickness measurements. Epithelial adherence assays showed an increase in adherence potential for a pneumococcal strain, when grown in mannose compared to glucose. Finally, transcriptome analysis of four clinical isolates revealed not only strain specific but also common carbon source-specific gene expression. Conclusion: Our findings may indicate a careful adaption of the lifestyle of S. pneumoniae according to the monosaccharides encountered in the respective human niche.


Asunto(s)
Galactosa , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/metabolismo , Carbono/metabolismo , Manosa , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Cápsulas Bacterianas/genética
4.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925509

RESUMEN

The structure of the exopolysaccharide capsule of Streptococcus pneumoniae is defined by the genetic arrangement of the capsule operon allowing the unequivocal identification of the pneumococcal serotype. Here, we investigated the environment-dependent composition of the polysaccharide structure of S. pneumoniae serotype 6F. When grown in a chemically defined medium (CDM) with glucose versus galactose, the exopolysaccharide capsule of the serotype 6F strains reveals a ratio of 1/0.6 or 1/0.3 for galactose/glucose in the capsule by 1H-NMR analyses, respectively. Increased production of the capsule precursor UDP-glucose has been identified by 31P-NMR in CDM with glucose. Flow cytometric experiments using monoclonal antibodies showed decreased labelling of Hyp6AG4 (specific for serotype 6A) antibodies when 6F is grown in glucose as compared to galactose, which mirrors the 1H-NMR results. Whole-genome sequencing analyses of serotype 6F isolates suggested that the isolates evolved during two different events from serotype 6A during the time when the 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced. In conclusion, this study shows differences in the capsular structure of serotype 6F strains using glucose as compared to galactose as the carbon source. Therefore, 6F strains may show slightly different polysaccharide composition while colonizing the human nasopharynx (galactose rich) as compared to invasive locations such as the blood (glucose rich).


Asunto(s)
Carbono/metabolismo , Polisacáridos Bacterianos/química , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Anticuerpos Monoclonales/metabolismo , Evolución Biológica , Citometría de Flujo , Galactosa/metabolismo , Genoma Bacteriano , Glucosa/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Nasofaringe/microbiología , Fósforo , Filogenia , Infecciones Neumocócicas/microbiología , Serogrupo , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/aislamiento & purificación
5.
Molecules ; 26(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808335

RESUMEN

Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin-macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Ácidos Nucleicos/química , Fosfolípidos/química , Fármacos Fotosensibilizantes/química , Polímeros/química , Porfirinas/química , Proteínas/química , Humanos , Micelas
6.
J Control Release ; 316: 150-167, 2019 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-31689463

RESUMEN

Encapsulation of porphyrinic photosensitizers (PSs) into polymeric carriers plays an important role in enhancing their efficiency as drugs in photodynamic therapy (PDT). Porphyrin aggregation and low solubility as well as the preservation of the advantageous photophysical properties pose a challenge on the design of efficient PS-carrier systems. Block copolymer micelles (BCMs) and polyvinylpyrrolidone (PVP) are promising drug delivery vehicles for physical entrapment of PSs. BCMs exhibit enhanced dynamics as compared to the less flexible PVP network. In the current work the question is addressed how these different dynamics affect PS encapsulation, release from the carrier, reaction with serum proteins, and cellular uptake. The porphyrinic compounds serine-amide of chlorin e6 (SerCE) and chlorin e4 (CE4) were used as model PSs with different lipophilicity and aggregation properties. 1H NMR and fluorescence spectroscopy were applied to study their interactions with PVP and BCMs consisting of Kolliphor P188 (KP). Both chlorins were well encapsulated by the carriers and had improved photophysical properties. Compared to SerCE, the more lipophilic CE4 exhibited stronger hydrophobic interactions with the BCM core, stabilizing the system and preventing exchange with the surrounding medium as was shown by NMR NOESY and DOSY experiments. PVP and BCMs protected the encapsulated chlorins against interaction with human transferrin (Tf). However, SerCE and CE4 were released from BCMs in favor of binding to human serum albumin (HSA) while PVP prevented interaction with HSA. Fluorescence spectroscopic studies revealed that HSA binds to the surface of PVP forming a protein corona. PVP and BCMs reduced cellular uptake of the chlorins. However, encapsulation into BCMs resulted in more efficient cell internalization for CE4 than for SerCE. HSA significantly lowered both, free and carrier-mediated cell uptake for CE4 and SerCE. In conclusion, PVP appears as the more universal delivery system covering a broad range of host molecules with respect to polarity, whereas BCMs require a higher drug-carrier compatibility. Poorly soluble hydrophobic PSs benefit stronger from BCM-type carriers due to enhanced bioavailability through disaggregation and solubilization allowing for more efficient cell uptake. In addition, increased PS-carrier hydrophobic interactions have a stabilizing effect. For more hydrophilic PSs, the main advantage of polymeric carriers like PVP or poloxamer micelles lies in their protection during the transport through the bloodstream. HSA binding plays an important role for drug release and cell uptake in carrier-mediated delivery to the target tissue.


Asunto(s)
Fármacos Fotosensibilizantes/administración & dosificación , Porfirinas/administración & dosificación , Povidona/química , Células Cultivadas , Clorofilidas , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Fármacos Fotosensibilizantes/química , Polímeros/química , Porfirinas/química , Serina/química , Albúmina Sérica Humana/metabolismo , Solubilidad , Transferrina/metabolismo
7.
Chemphyschem ; 19(9): 1089-1102, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29384257

RESUMEN

Photodynamic therapy (PDT) with porphyrinic photosensitizers largely relies on efficient drug formulations to prevent porphyrin aggregation and to enhance water solubility and stability in physiologic environments. In this study, we compare two polymeric carrier systems, polyvinylpyrrolidone (PVP) and block copolymer micelles (BCMs) formed by the poloxamer Kolliphor P188 (KP), for their encapsulation efficiencies of porphyrin (xPP) and chlorin e6 (xCE) derivatives. Monomerization, loading efficiency, and dynamic properties were examined by 1 H NMR spectroscopy chemical shift titration, DOSY, and T2 relaxation time measurements. Binding affinity was determined by UV/Vis spectroscopy. Both PVP and KP-BCMs were well suited to disaggregate and encapsulate amphiphilic xCE, whereas they were less efficient for the xPP compounds. PVP exhibited higher monomerization efficiency than KP-BCMs. Significant differences were found in the dynamic behavior of the carriers. PVP formed rather stable complexes with the porphyrinic compounds, whereas a dynamic equilibrium between free and bound porphyrins was found to exist in the presence of KP-BCMs. This may have a considerable impact on the pharmacokinetic properties of the corresponding delivery systems.


Asunto(s)
Aminoácidos/química , Portadores de Fármacos/química , Fármacos Fotosensibilizantes/química , Porfirinas/química , Povidona/química , Micelas , Espectroscopía de Protones por Resonancia Magnética , Solubilidad , Espectrofotometría
8.
Chemphyschem ; 18(22): 3153-3162, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28872751

RESUMEN

Room-temperature ionic liquids (RTILs) are promising new electrolytes for efficient carbon dioxide reduction. However, due to their high viscosity, the mass transport of CO2 in RTILs is typically slow, at least one order of magnitude slower than in aqueous systems. One possibility to improve mass transport in RTILs is to decrease their viscosity through dilution with water. Herein, defined amounts of water are added to 1-butyl-3methylimidazolium tetrafluoroborate ([BMIm][BF4 ]), which is a hydrophilic RTIL. Electrochemical measurements on quiescent and hydrodynamic systems both indicate enhanced CO2 electroreduction. This enhancement has its origin in thermodynamic/kinetic effects (the addition of water increases the availability of H+ , which is a reaction partner of CO2 electroreduction) and in an increased rate of transport due to lower viscosity. Electrochemically determined diffusion coefficients for CO2 in [BMIm][BF4 ]/water systems agree well with values determined by NMR spectroscopy.

10.
Anal Bioanal Chem ; 408(20): 5651-6, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27271261

RESUMEN

The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.


Asunto(s)
Músculo Esquelético/química , Neoplasias Experimentales/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Fosfatos de Azúcar/análisis , Fosfatos de Azúcar/química , Animales , Línea Celular Tumoral , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ovinos
11.
J Phys Chem B ; 119(36): 12117-28, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26291382

RESUMEN

Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by (1)H NMR spectroscopy. xCE-PVP complex formation was confirmed by (1)H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). (1)H(1)H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV-vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.


Asunto(s)
Fármacos Fotosensibilizantes/química , Porfirinas/química , Povidona/química , Aminoácidos/química , Clorofilidas , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...